Ms-8 Question bank (10)
Ms-8 Question bank
Ms-8 Dec 2008
Written by sales@mbaonlinepapers.com sales@mbaonlinepapers.comMS-8 Dec, 2008
MS-8 : QUANTITATIVE ANALYSIS FOR MANAGERIAL APPLICATIONS
l. Explain Hypothesis testing. What are the steps involved in hypothesis testing ? Discuss the two types of .errors in testing of hypothesis
2. A telephone company in a town has 1000 subscribers on its list and collects a fixed charge of Rs. 400 per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re.1one subscriber will discontinue the service. Find what increase will bring maximum revenue to the company.
3. A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is 1/7 and that of wife's selection is l/5. What is the probability that
(a) both of them will be selected ?
(b) only one of them will be selected ?
(c) none of them will be selected ?
(d) at least one'of them will be selected ?
4. To test the effectiveness of training, a group of 5 participants were selected and given a test before and after the training. The result of the tests was as under:
Participant |
1 |
2 |
3 |
4 |
5 |
Score before training |
10 |
12 |
15 |
18 |
10 |
Score after training |
15 |
10 |
18 |
32 |
25 |
Can the training be regarded as effective at 5 percent level of significance ?
5. An automobile company gives you the following information about age-groups and the liking for a particular model of car which is expected to be introduced :
Person |
Age less then equal to 20 |
20-39 |
40-59 |
Age greater then equal to 60 |
total |
Liked the car |
140 |
80 |
40 |
20 |
280 |
Disliked the car |
60 |
50 |
30 |
80 |
220 |
Total |
200 |
130 |
70 |
100 |
500 |
On the basis of this data, can it be concluded that the model appeal is independent of the age-groups ?
(Given v = 3, and chi square at 0.05 = 7.815
6. Write short notes on any three of the following :
(a) Minor of an element of matrix
(b) Equally likely events
(c) Advantages of probability sampling
(d) Minimax criterion of decision making
(e) Standard deviation and standard error
7. Obtain the two regression equations for the following data using the method of least squares
x |
1 |
2 |
3 |
4 |
5 |
y |
5 |
7 |
9 |
10 |
11 |
8. Determine the sample size if sample standard deviation s = 6, population mean : 25, sample mean = 23 and the degree of precision is 99%.
Ms-8 Dec 2009
Written by sales@mbaonlinepapers.com sales@mbaonlinepapers.comMS-8 Dec, 2009
MS-8 : QUANTITATIVE ANALYSIS FOR MANAGERIAL APPLICATIONS
1.The following data describes the age at which employees reach to the level of 'senior manager in a multinational company
Age in years |
Below 34.5 |
34.5-37.5 |
37.5-40.5 |
40.5-43.5 |
Over 43.5 |
No of people reaching the leve |
14 |
60 |
95 |
24 |
7 |
Find the quartile deviation.
2. In a bolt factory, machines A, B, C manufacture respectively 25%, 35% and 40% of the total production. Of their output 5%, 4% and 2% respectively are defective bolts. A bolt is drawn at random and is found to be defective. What is the probability that it is manufactured by machine B ?
3. Describe the design of stratified sampling. What is a strata ? Discuss about proportional allocation and disproportional allocation.
4. In a study to test whether there is difference between the average heights of adult females born in two different countries, random samples yielded the following results.
n1=120 , n2 = 150 , mean of x1=62.7 , mean of x2=61.8 and s1=2.50 and s2=2.62
where the measurements are in inches. Use 0.05 level of significance to test the difference between the average heights.
5. Find the most likely price of commodity A in Mumbai corresponding to the price of Rs. 70 at Kolkata from the following data.
Average Price in Kolkata Rs. 65
Average Price in Mumbai Rs. 67
Standard Deviation of prices in Kolkata Rs. 2.5
Standard Deviation of prices in Mumbai Rs. 3.5
Correlation coefficient between two + 0.8 prices in two towns
6. Write short notes on any three of the following :
a) Cramer's Rule.
b) Exponential Smoothing.
c) More than type ogive.
d) Cumulative Density Function (cdf) of a continuous random variable.
(e) Power curve of a test.
7.In a locality containing 18000 families a sample of 840 families was selected at random. Of these 840 families 206 families were found to have a weekly income of Rs. 500 or less. It is desired to know how many out of 18000 families have a weekly income of Rs. 500 or less. Use 3 sigma limits.
8. A tour operator charges Rs. 136 per passenger for 100 passengers with a discount of Rs. 4 for every group of 10 passengers in excess of 100. Determine the number of passengers that will maximize the amount of inoney the tour operator receives.
Ms-8 Dec 2010
Written by sales@mbaonlinepapers.com sales@mbaonlinepapers.comMS-8 Dec, 2010
MS-8 : QUANTITATIVE ANALYSIS FOR MANAGERIAL APPLICATIONS